DeepSLAM project is designed to develop an end-to-end and all-in-one deep neural network capable of followings, simultaneously, with only road scene RGB images
(a) Object Detection using RGB images and videos;
(b) Object Re-identification over multiple frames, with occlusions;
(c) Predicting multiple object’s future trajectories.
This all-in-one solution provides a better level of information integrity and reuse. In doing so, a local belief of the surrounding area will be trained with grid cells, a navigation system in humans’ brain, to generate a local implicit map to capture dynamic road condition. Then local coarse implicit mapping is then combined with global accurate road information for above three goals.
Tag: Dixon
F5-T DeepSLAM: Visual Intelligence for Navigation and Planning
The goals of this project include developing the ability to use offline, transferred, and real-time learning using various data sources (intermittent state feedback, cloud) to enable SLAM and related image-based estimation methods.